444 research outputs found

    Continuity bounds on the quantum relative entropy

    Full text link
    The quantum relative entropy is frequently used as a distance, or distinguishability measure between two quantum states. In this paper we study the relation between this measure and a number of other measures used for that purpose, including the trace norm distance. More precisely, we derive lower and upper bounds on the relative entropy in terms of various distance measures for the difference of the states based on unitarily invariant norms. The upper bounds can be considered as statements of continuity of the relative entropy distance in the sense of Fannes. We employ methods from optimisation theory to obtain bounds that are as sharp as possible.Comment: 13 pages (ReVTeX), 3 figures, replaced with published versio

    Parameter estimation in pair hidden Markov models

    Full text link
    This paper deals with parameter estimation in pair hidden Markov models (pair-HMMs). We first provide a rigorous formalism for these models and discuss possible definitions of likelihoods. The model being biologically motivated, some restrictions with respect to the full parameter space naturally occur. Existence of two different Information divergence rates is established and divergence property (namely positivity at values different from the true one) is shown under additional assumptions. This yields consistency for the parameter in parametrization schemes for which the divergence property holds. Simulations illustrate different cases which are not covered by our results.Comment: corrected typo

    Quantum hypothesis testing with group symmetry

    Full text link
    The asymptotic discrimination problem of two quantum states is studied in the setting where measurements are required to be invariant under some symmetry group of the system. We consider various asymptotic error exponents in connection with the problems of the Chernoff bound, the Hoeffding bound and Stein's lemma, and derive bounds on these quantities in terms of their corresponding statistical distance measures. A special emphasis is put on the comparison of the performances of group-invariant and unrestricted measurements.Comment: 33 page

    Two-parameter deformations of logarithm, exponential, and entropy: A consistent framework for generalized statistical mechanics

    Full text link
    A consistent generalization of statistical mechanics is obtained by applying the maximum entropy principle to a trace-form entropy and by requiring that physically motivated mathematical properties are preserved. The emerging differential-functional equation yields a two-parameter class of generalized logarithms, from which entropies and power-law distributions follow: these distributions could be relevant in many anomalous systems. Within the specified range of parameters, these entropies possess positivity, continuity, symmetry, expansibility, decisivity, maximality, concavity, and are Lesche stable. The Boltzmann-Shannon entropy and some one parameter generalized entropies already known belong to this class. These entropies and their distribution functions are compared, and the corresponding deformed algebras are discussed.Comment: Version to appear in PRE: about 20% shorter, references updated, 13 PRE pages, 3 figure

    Security of Quantum Key Distribution with entangled quNits

    Full text link
    We consider a generalisation of Ekert's entanglement-based quantum cryptographic protocol where qubits are replaced by quNNits (i.e., N-dimensional systems). In order to study its robustness against optimal incoherent attacks, we derive the information gained by a potential eavesdropper during a cloning-based individual attack. In doing so, we generalize Cerf's formalism for cloning machines and establish the form of the most general cloning machine that respects all the symmetries of the problem. We obtain an upper bound on the error rate that guarantees the confidentiality of quNit generalisations of the Ekert's protocol for qubits.Comment: 15 pages, equation 15 and conclusions corrected the 14th of April 2003, new results adde

    Complexity Measures from Interaction Structures

    Full text link
    We evaluate new complexity measures on the symbolic dynamics of coupled tent maps and cellular automata. These measures quantify complexity in terms of kk-th order statistical dependencies that cannot be reduced to interactions between k1k-1 units. We demonstrate that these measures are able to identify complex dynamical regimes.Comment: 11 pages, figures improved, minor changes to the tex

    A Bivariate Measure of Redundant Information

    Get PDF
    We define a measure of redundant information based on projections in the space of probability distributions. Redundant information between random variables is information that is shared between those variables. But in contrast to mutual information, redundant information denotes information that is shared about the outcome of a third variable. Formalizing this concept, and being able to measure it, is required for the non-negative decomposition of mutual information into redundant and synergistic information. Previous attempts to formalize redundant or synergistic information struggle to capture some desired properties. We introduce a new formalism for redundant information and prove that it satisfies all the properties necessary outlined in earlier work, as well as an additional criterion that we propose to be necessary to capture redundancy. We also demonstrate the behaviour of this new measure for several examples, compare it to previous measures and apply it to the decomposition of transfer entropy.Comment: 16 pages, 15 figures, 1 table, added citation to Griffith et al 2012, Maurer et al 199

    Controlling orbital moment and spin orientation in CoO layers by strain

    Get PDF
    We have observed that CoO films grown on different substrates show dramatic differences in their magnetic properties. Using polarization dependent x-ray absorption spectroscopy at the Co L2,3_{2,3} edges, we revealed that the magnitude and orientation of the magnetic moments strongly depend on the strain in the films induced by the substrate. We presented a quantitative model to explain how strain together with the spin-orbit interaction determine the 3d orbital occupation, the magnetic anisotropy, as well as the spin and orbital contributions to the magnetic moments. Control over the sign and direction of the strain may therefore open new opportunities for applications in the field of exchange bias in multilayered magnetic films

    Universal Quantum Information Compression

    Full text link
    Suppose that a quantum source is known to have von Neumann entropy less than or equal to S but is otherwise completely unspecified. We describe a method of universal quantum data compression which will faithfully compress the quantum information of any such source to S qubits per signal (in the limit of large block lengths).Comment: RevTex 4 page
    corecore